دایره های محاطی داخلی و خارجی یک مثلث

img/daneshnameh_up/3/3f/Excircles.png
یک مثلث (سیاه)
با دایره داخلی (بنفش)،
دوایر خارجی (آبی)،
نیمسازهای زوایای داخلی (قرمز)
و نیمسازهای زوایای خارجی (سبز)


دایره های محاطی داخلی و خارجی یک مثلث

در هندسه، دایره محاطی داخلی یک مثلث بزرگترین دایرهای است که آن مثلث میتواند در بر بگیرد؛ این دایره سه ضلع آنرا لمس مینماید ( بر آنها
مماس میباشد). مرکز دایره محاطی مرکز داخلی مثلث نامیده میشود. یک دایره محاطی خارجی مثلث، یک دایره در خارج مثلث است که بر یکی از اضلاع مثلث و امتداد دو ضلع دیگر مماس باشد. هر مثلث دارای سه دایره محاطی خارجی متمایز، که هر کدام بر یکی از اضلاع مثلث مماس میباشد.

مرکز دایره محاطی داخلی بر روی تقاطع نیمسازهای زوایای داخلی قرار دارد. مرکز یک دایره محاطی خارجی بر روی تقاطع نیمساز یک
زاویه داخلی و نیمسازهای خارجی دو زاویه دیگر قرار دارد. از این رو، استنباط میگردد که مرکز دایره محاطی داخلی و سه مرکز دایره های محاطی خارجی یک سیستم چهارمرکزی (orthocentric) را تشکیل میدهند.

شعاع این دوایر ارتباط نزدیکی با سطح یک مثلث دارد. اگر S سطح مثلث و اضلاع آن b ،a و c باشند،

شعاع دایره داخلی ( که "شعاع داخلی" نیز گفته میشود) برابر است با: (S/(2(a+b+c).

شعاع دایره خارجی در سمت a برابر است با: (S/(2(-a+b+c

برای دایره در سمت b برابر است با: (S/(2(a-b+c)

و برای دایره در سمت c برابر است با: (S/(2(a+b-c).

از این روابط درمیابیم که دوایر خارجی از دایره داخلی بزرگتراند و بزرگترین دایره خارجی، دایره ای است که به بزرگترین ضلع چسبیده است.


مثلث با دایره داخلی (سیاه),
مثلث تماس (قرمز)، نقطه جرگونه (سبز)
















دایره نه نقطه ای مثلث بر سه دایره خارجی و همچنین دایره داخلی مماس میباشد. نقطه فورباخ(Feuerbach) روی دایره داخلی قرار دارد.

با علامت گذاری رئوس مثلث با B، A و C و سه نقطه تماس دایره داخلی و مثلث با TB، TA و TC (که TA روبروی A قرار داشته و به همین ترتیب بقیه)، مثلث TATBTC

آمار

آمار علم و عمل توسعه دانش انسانی از طریق استفاده از داده های تجربی است. آمار بر نظریه‌ی آمار مبتنی است که شاخه‌ای از ریاضیات کاربردی است. در نظریه‌ی آمار، اتفاقات تصادفی و عدم قطعیت توسط نظریه احتمال مدل می‌شوند. عمل آماری، شامل برنامه‌ریزی، جمع‌بندی، و تفسیر مشاهدات غیر قطعی است. از آنجا که هدف آمار این است که از داده‌های موجود «بهترین» اطلاعات را تولید کند، بعضی مؤلفین آمار را شاخه‌ای از نظریه‌ی تصمیم‌گیری به شمار می‌آورند.

تاریخچه

سرآغاز اولیه آمار را باید در شمارش های آماری حوالی آغاز قرن اول میلادی یافت. اما ،تنها در قرن هجدهم بود که این علم ، با به کار رفتن در توصیف جنبه هایی که شرایط یک وضعیت را مشخص میکردند ، به عنوان رشته ای علمی و مستقل شروع به مطرح شدن کرد.
مفهوم از کلمه
لاتینی ،به معنی شرط ، استخراج شده است. مدت های مدید ، این علم ، محدود به کار در این حوزه بود ، و تنها در دهه های اخیر از این انحصاری جدا شدو ، و به کمک نظریه احتمال ،شروع به بررسی روش های تحلیل داده های آماری و اثبات فرض های آماری کرد.
روش های این آمار ریاضی با آشکار کردن قوانین جدید ، به ابزاری موثر در علوم طبیعی و تکنولوژی تبدیل شد.

جامعه و نمونه

جامعه یک بررسی آماری دارای مشاهده ها یا آزمایش هایی تحت شرایطی یکسان ، به عنوان عنصرهای خود است. هر یک از این عنصرها را میتوان نسبت به مشخصه های متفاوتی بررسی کرد ، که می توانند به عنوان متغیرهای تصادفی XوY .... در نظر گرفته شوند.
اگر مشخصه تحت بررسی X ، دارای
تابع توزیع F در جامعه مربوط باشد ، آنگاه گفته می شود که جامعه مورد بحث دارای توزیع F نسبت به مشخصه X است. در بررسی های آماری همواره زیر مجموعه ای متناهی از عناصر جامعه مورد تحقیق قرار می گیرد.این زیر مجموعه به نمونه موسوم است ، و n، تعداد عناصر موجود در آن ، اندازه نمونه نامیده می شود.

مثال

اگر وزن پسر بچه های ده ساله متغیر تصادفی x باشد ، در این صورت تمام پسر بچه های به این سن یک جامعه تشکیل می دهند . اندازه های وزن پسربچه های در شماری از مکان ها یک نمونه می سازند ، و هر پسر بچه عنصری از جامعه مزبور است . وزن مورد بحث مشخصه ای از عنصر های مزبور به شمار می رود ، و سایر مشخصه ها ، به عنوان مثال ، بلندی قد و اندازه سینه اند.

طرح آزمایش

در بررسی یک مسئله با روش های آماری ، باید نقشه آزمایش کشیده شود که شامل روش جمع آوری داده ها،اندازه نمونه مورد نظر و روش حل آن مسئله است. در این مورد هر چه نقشه آزمایش دقیق تر باشد ، نتایج به دست آمده از روش های آماری بهتر خواهند بود . بخصوص ، باید اطمینان حاصل شود که هیچ یک از اندازه گیری هایی که برای نتایج مورد نظر دارای اهمیت اند از قلم نیفتند یا ناقص نباشند . اما در این مورد همچنین می توان ، تنها به همان اندازه که می شود با بخش ناچیزی از هزینه ها به دست آورد قناعت و از دستاوردی با یک رشته آزمون بسیار پرخرج اجتناب کرد.
در این رابطه ، نکات زیر از اهمیت برخوردارند:

  • مواد یا اطلاعات بررسی شده باید همگن باشند ؛ یعنی ،روش آزمون ،در دوره بررسی ، باید یکسان باقی بماند. در وسایل یا شرایط تولید نباید تغییری داده شود ، و ابزارهای اندازه گیری با دقت های متفاوت نباید به کار روند.


 

  • بایدتا آنجا که امکان دارد خطاهای منظم یا عوامل موثر کنار گذاشته شوند . به عنوان مثال ، اگر مایل باشیم دو ماده را با هم مقایسه کنیم ، باید هر دو را در یک دستگاه تهیه کرده باشیم ، چه در غیر این صورت تفاوت دستگاه ها در نتایج بررسی وارد می شود ، و در کشاورزی ، در آزمون کودهای متفاوت ، باید زمین را ،به خاطر یکسان کردن تاثیر نوع خاک و موقعیت آن ، به باریکه های موازی تقسیم کرد.


باید نظارتی در نظر گرفته شود. در این مورد، یا برای مشخصه تحت بررسی مقادیر استانداردی موجودند ،که می توانند با نتایج آزمون مقایسه شوند ، یا آزمونهای نظارتی باید انجام گیرند . به عنوان مثال ، در آزمایش مربوط به کودها ، باید تاثیر یک کود از تفاوت بین گیاهانی که که با آن یا بدون آن ،تحت شرایط محیطی یکسان ،رشد کرده اند ، ارزیابی شود.

انتخاب نمونه باید تصادفی یا نماینده ای باشد . انتخاب تصادفی انتخابی است که در آن هر عنصر برای اینکه عضو آن نمونه باشد یا نباشد ، از احتمال یکسان برخوردار است. به عنوان مثال ، در یک محموله پیچ ، نمونه مورد آزمون نباید تماماَ از یک مکان انتخاب شود ،بلکه باید روی کل محموله توزیع شده باشد ، و در اندازه گیری ضخامت سیم ها نقاط اندازه گیری شده باید به طور تصادفی روی تمام طول سیم توزیع شده باشد.

انتخاب تصادفی عناصر را می توان به کمک جداول اعداد تصادفی انجام داد ، و انتخاب نماینده ای نمونه را می توان زمانی انجام داد که ماده تحت بررسی را بتوان به گونه ای یکتا به اجزایی تقسیم کرد . به عنوان مثال ، امکان پذیر است که یک محموله پیچ را به چنان طریقی تقسیم کنیم که هر جزء مزبور ، به تصادف انتخاب کرد ، ودر این صورت کل آنها نمونه مورد نظر را تشکیل می دهند. به این طریق تصویری از محموله ، بر مبنای مقیاسی کاهش یافته به دست می آید.
با توجه به اندازه نمونه مورد آزمون ، البته باید به بررسی مورد بزرگ تر و استنتاج بهتر ، درباره جامعه ای که از آن می توان ساخت ، پرداخت ،اما از طرف دیگر ، اندازه مزبور ، به دلایل زمانی و تلاش به کار رفته ، معمولاَ کوچک در نظر گرفته می شود، بنابر این باید انحرافی تصادفی از نتایج را نیز به حساب بیاوریم. هنگامی که ، با روش های آماری ، استنتاجاتی درباره جامعه ای به دست می آوریم باید اندازه نمونه مورد آزمون را نیز در نظر بگیریم.

پارادوکس

زمینه تاریخی پارادوکس


پیدایش پارادوکس ها زمینه تاریخی دارد.برای فهم بهثر ان داستان زیر را ذکر میکنیم:
در یک روز جمعه دادگاه شخصی را به مرگ محکوم کرد. قاضی به زندانیِ محکوم گفت:

ظهریکی از روزهای هفته‌ی آینده حکم اعدام درباره‌ی تو اجرا خواهد شد، ولی ما آنروز را برای تو مشخص نخواهیم کرد و تو هرگز قبل از آن روز اطلاع پیدا نخواهی کرد و فقط شش ساعت قبل یعنی صبحِ روز اجرای حکم موضوع را به تو اطلاع خواهیم داد.

قاضیِ مذکور در همه‌ی عالم به ذکاوت و خوش‌قولی مشهور بود و همیشه دقیقاً به گفته‌ی خود عمل می‌نمود.

زندانی به همراهی وکیل مدافع خود به سلولش داخل شد و هر دو غمزده در گوشه‌ای به فکر فرو رفتند. ناگاه وکیل مدافع با لبخندی پیروزمندانه سکوت را شکست و گفت:

اجرای حکم قاضی امکان ندارد.

زندانی گفت:

من که چیزی سردر نمی‌آورم. چرا؟

وکیل مدافع پاسخ داد:

اجازه بده تا درست برایت شرح دهم: مسلماًً آن‌ها روز جمعه نمی‌نتوانند تو را اعدام کنند. به دلیلِ اینکه اگر فرضاً بخواهند در روز جمعه‌ی آینده حکم را اجرا نمایند. در این صورت تو تمام روزهای هفته و همچنین بعدازظهر پنج‌شنبه زنده خواهی بود و چون فقط روز جمعه یعنی یک روز دیگر به مهلت باقی مانده، بعد ازظهر پنج‌شنبه برای تو مسلم خواهد شد که فردا یعنی روز جمعه و تنها روز آخر هفته ، حکم اجرا خواهد شد. در نتیجه تو روز اجرای حکم را یک روز پیش‌تر پیش‌بینی و قبل از صبح جمعه از آن اطلاع حاصل کرده‌ای و این موضوع نقض حکم قاضی بوده و گفته‌ی او را بی‌اعتبار خواهد کرد.


زندانی گفته‌ی او را تصدیق کرد.وکیل مدافع ادامه داد:

بنابراین روز جمعه‌ی آینده از فهرستِ روزهای مهلت حذف و در آن روز حکم غیرقابل اجرا است. و اما روز پنج‌شنبه نیز نمی‌توانند تو را اعدام کنند چون در بعدازظهرِ چهارشنبه دو روز بیشتر به آخر هفته نمانده و چون روز جمعه از فهرست حذف شد ، تنها روز پنج‌شنبه آخرین روز اجرای حکم می‌باشد نتیجتاً بعدازظهر چهارشنبه تو خواهی دانست در روز پنج‌شنبه که آخرین روز امکان اجرای حکم است، تو را اعدام خواهند کرد. اطلاع تو یک روز پیشتر از اجرای حکم مجدداً متناقض با حکم قاضی است. بنابراین پنج‌شنبه نیز حکم غیرقابل اجرا است. چهارشنبه نیز امکان اجرای حکم وجود ندارد چون جمعه و پنج‌شنبه حکم غیرقابل اجرا شد و فقط چهارشنبه آخرین روز اجرای حکم تشخیص داده شد و تو که بعدازظهر سه‌شنبه هنوز زنده هستی، اجرای حکم روز چهارشنبه را پیش‌بینی خواهی کرد و از آن اطلاع خواهی یافت.

در این موقع که زندانی از حالت غمزدگی بیرون آمده بود با لبخندی مسرت‌بخش گفت:

پس به هر طریق می‌توان گفت که روز سه‌شنبه و سپس دوشنبه و بالاخره یک‌شنبه نمی‌توانند مرا اعدام کنند و فقط فردا یعنی شنبه باقی است. و اما فردا نیز اجرای حکم برای آنها غیرممکن است چون در این صورت من امروز موضوع را خواهم فهمید.


ملاحظه می‌شود از لحاظ منطقی هیچ تناقضی در حکم قاضی جهت اعدام زندانی وجود ندارد با این وجود حکمش غیرقابل اجرا است. به دلایل بالا به نظر می‌آید که حکم قاضی باعث نقض حکم خودش شده است، اگر حکم را اجرا کند خلاف حکم خودش شده است، اگر حکم را اجرا کند خلاف حکم خود عمل کرده و اگر اجرا نکند باز هم خلاف حکم خود رفتار نموده.


روایت دیگری از این پارادکس از یک اعلامیه‌ی فرمانده‌ی نظامی گفتگو می‌کند که در آن ذکر شده:

برای تمرین ، در یکی از شبهای هفته‌ی آینده آژیر خطر کشیده خواهد شد. شب تمرین در شش بعدازظهر همان روز به اطلاع عامه خواهد رسید و تا شش بعدازظهر کسی از شب موعود مطلع نخواهد شد.


به ظاهر چنین به نظر می رسد که خود این اعلامیه ثابت می‌کند که تمرین هرگز انجام نخواهد گرفت. به زبان دیگر اجرای تمرین عملی نیست مگر این که به متن اعلامیه عمل نشود.

پارادوکس درریاضی


در ریاضیات نیز میتوان به یک پارادوکس مهم در نظریه مجموعه ها به نام پارادوکس راسل اشاره کرد:
مجموعهA را مجموعه ای تعریف می کنیم که شامل اعضای خود نباشد .یعنی

در این صورت اگر انگاه

اگر انگاه

که این پارادوکس از معروفثرین پارادوکس ها در
نظریه مجموعه هامی باشد

قضیه اساسی علم حساب

قضیه اساسی حساب در نظریه اعداد به این شکل بیان می شود:

هر عدد طبیعی بزرگتر از یک را می توان به طور یکتا به صورت حاصلضربی از اعداداول نوشت.

به عنوان مثال:



حال اگر ترتیب نوشتن عاملها را در نظر نگیریم این تنها تجزیه از عدد 6936 به عوامل اول است که می توانیم بنویسیم.

اثبات این قضیه شامل دو قسمت است. ابتدا نشان می دهیم هر عدد را می توان به صورت حاصلضربی از اعداد اول نوشت و سپس ثابت می کنیم این تجزیه یکتاست.

اثبات:


برهان: فرض می کنیم عدد صحیح مثبتی مانند x وجود دارد که نمی توان آن را به حاصلضرب اعداد اول تجزیه کرد. مجموعه A را به این شکل تعریف می کنیم:

مجموعه n های عضو اعداد طبیعی به طوریکه 1
A مخالف تهی است زیرا x عضوی از A می باشد. پس بنا به اصل خوش ترتیبی اعداد طبیعی A عضو ابتدا دارد.

فرض می کنیم m ابتدای A باشد(یعنی m عضوی از A است و در نتیجه قابل تجزیه به اعداد اول هم نیست). بنابراین m اول نیست پس عددی مرکب است یعنی:



بدیهی است که d1 و d2 عضو A نیستند زیرا از m کوچکترند لذا هر دو تجزیه پذیرند. بنابراین:






به طوریکه p ها و q ها اول هستند. در نتیجه:


می بینیم که m تجزیه پذیر شده و این با فرض ما در تناقض است.

چرتکه


img/daneshnameh_up/a/a2/ABACUS2.gif


چرتکه (Abacus) وسیله محاسبه ای قدیمی است که هنوز در بسیاری از کشورهای آسیایی مورد استفاده قرار میگیرد.

ساختار چرتکه


یک چرتکه استاندارد برای انجام چهار عمل اصلی ریاضی مورد استفاده قرار میگیرد و میتوان از آن برای محاسبه ریشه دوم و سوم اعداد نیز استفاده کرد. چرتکه از یک قاب اصلی تشکیل شده است که چندین میله عمودی در آن جاسازی شده و در هر یک از این میله ها تعدادی مهره چوبی وجود دارند که به بالا و پایین حرکت میکنند. یک میله افقی فضای داخل قاب را به دو قسمت تقسیم میکند که به نام ردیف بالا و ردیف پایین شناخته میشوند.

اجزا و شیوه محاسبه


چرتکه را برای استفاده بر روی سطح صافی مانند میز یا روی پا قرار میدهند و تمام مهره های بالا و پایین را به سمت مخالف میله افقی حرکت میدهند.

ارزش مهره ها : ارزش عددی هر مهره در ردیف بالا 5 و در ردیف پایینی معادل 1 است. هنگامی که مهره ها به سمت میله افقی حرکت داده شوند در واقع شمرده شده اند.

شمارش: هنگامی که 5 مهره در ردیف پایینی شمرده شود، نتیجه به ردیف بالا منتقل میشود. هنگامی که تمام مهره های بالا و پایین یک ستون شمرده شدند،نتیجه آن یعنی (10) به نزدیکترین ستون سمت چپ آن منتقل میشود.

آخرین ستون سمت راست، ستون یکان است، ستون بعدی دهگان، بعدی صدگان و الی آخر. محاسبات اعشاری به این ترتیب انجام میشود که فاصله بین دو ستون به عنوان ممیز تعیین میشود و تمام ستونهای سمت راست این فاصله اعداد اعشار و ستونهای سمت چپ
اعداد صحیح را نشان میدهند.

چرتکه در زمان ما


امروزه مغازه داران آسیایی همچنان از چرتکه برای محاسبات خود استفاده میکنند و استفاده از چرتکه در بسیاری از مدارس خاور دور تدریس میشود.برای آموزش محاسبات ریاضی به کودکان نابینا هم از چرتکه استفاده میشود و این بهترین وسیله جایگزین برای کاغذ و مداد است. علاوه بر آن در بسیاری از مدارس عادی نیز به جای ماشین حساب و یا انجام محاسبات روی کاغذ، از چرتکه استفاده میکنند و روش استفاده آنرا به دانش آموزان تعلیم میدهند.

اعداد طبیعی

به مجموعه اعداد {... ،1،2،3،4،5،6،7} كه همانا زیرمجموعه اعداد بزرگتر یا مساوی 1 از اعداد صحیح می‌باشد ، مجموعه اعداد طبیعی می‌گوییم.
img/daneshnameh_up/3/34/natnum.JPG


مجموعه اعداد طبیعی را با نماد N نمایش می‌دهند.
مهمترین كاربرد اعداد طبیعی‌ شمردن است.
در ریاضیات نوین و علم
مبانی ریاضی اعداد طبیعی به صورت زیر تعریف می‌‌گردند :

مجموعه تهی‌ = {} = 0
{ {} } = {0} = 1
{ {{}} ، {} } = {0،1} = 2
{ { {{}} ، {} } ، { {} } ، {} }‌ = {0،1،2} = 3
.
.
.
{n = {0,1,2,3,…,n-1

طبق اصول كلاسیك
نظریه مجموعه‌ها یا ZFC ، تعاریف فوق خوش تعریف هستند.
طبق تعریف فوق اگر و اعداد طبیعی باشند ،‌ اگر و تنها اگر .
همان گونه كه می‌بينيد در اين تعريف عدد
صفر نيز عضو مجموعه اعداد طبيعي تعريف شده است.

خاصیت‌های اعداد طبیعی

  • مجموعه اعداد طبیعی شمارش‌پذير است.
  • مجموعه اعداد طبيعي خوش‌ترتيب است.
  • عمل جمع در مجموعه اعداد طبيعي بسته است.
  • عمل ضرب در مجموعه اعداد طبيعي بسته است.

سری تیلور

در ریاضی سری عبارت است از مجموع جملات یک دنباله.به عبارت دیگر سری شماری از اعداد است که بین آنها عملگر جمع قرار گرفته است.

...+5+4+3+2+1


سریها بر دو نوعند:سریهای متناهی و نامتناهی؛که سریهای متناهی را می توان با اعمال ساده جبری محاسبه کرد،ولی برای محاسبه سریهای نامتناهی باید از آنالیز کمک گرفت.
به عنوان مثال سری زیر یک سری متناهی است.




سری نامتناهی، سری میباشد که جملات آن محدود نیست.
به این سری توجه نمایید:

این سری یک سری عددی نامتناهی میباشد.که در حالت کلی به صورت زیر نشان داده میشود.که به آن سری هندسی میگویند.


a را جمله اول و k را قدر نسبت سری می نامند.مجموع n جمله اول یک سری رابا نشان میدهند
در صورتی که به سمت یک عدد متناهی سیر کند آن را همگرا مینامند. در غیر این صورت به آن یک سری واگرا گویند.
حال به معرفی نوع دیگری از سریها به نام سریهای توانی می پردازیم:سریهایی را که جملات آن توابعی از متغیر x باشند را سریهای توانی گویند.و مجموعه مقادیر از x که به ازای آنها توابع موجود در سری تعریف شده و سری همگرا باشد را میدان همگرایی سری گویند.

هر سری تابعی به شکل
را یک سری توانی بر حسب میگویند.واضح است که جملات آن به فرم زیردر میآید:


حال به قضیه مهمی به نام قضیه تیلور میرسیم؛طبق این قضیه میتوان هر تابعی را که در یک بازه بینهایت بار مشتق پذیر باشد میتوان در این بازه به صورت یک سری توانی نامتناهی که به سری تیلور معروف است نشان داد.به عنوان مثال تابعی مانند را میتوان به صورت جمع توابعی بر حسب نوشت.
قبل از اینکه به توضیح کامل درباره این سریها بپردازیم.مثالی را در مورد این سریها بیان میکنیم.تابع sinx را در نظر بگیرید.این تابع را میتوان به صورت سری زیر بیان کرد:





لازم به توضیح است که در سری فوق c=0 در نظر گرفته شده است.

در اشکال زیر نمودار سری به ازای n=4؛ n=7 و نمودار sinx از راست به چپ رسم شده است.
همانطور که مشاهده میشود هر قدر تعداد جملات سری افزایش یابد شکل آن به یک منحنی تبدیل مشود.و اگر تا بینهایت رسم شکل ادامه یابد به شکل تابع sinدر مآید.
  img/daneshnameh_up/c/ce/hamin.jpg  
                                   
حال به شکل تابع sinx توجه کنید متوجه میشوید که با ادامه روند رسم اشکال به ازای nهای نامتناهی سرانجام به شکل sinx خواهیم رسید.
حال در زیر به تشریح کامل سریهای تیلور می پردازیم.



بحث جامع



img/daneshnameh_up/3/3d/Sintay.png

''
sin(x)
و تخمین تیلور(Taylor)، چند جمله‌ای های از درجه 1، 3، 5، 7، 9، 11 و 13.''


در ریاضیات، سری‌های تیلور از یک تابع f حقیقی (یا مختلط) که معمولا بطور نامحدود مشتق پذیر بوده و در یک فاصله باز (a-r و a+r ) تعریف شده، بصورت سریهای توانی زیر میباشد:
:

که در آن !n فاکتوریل n و (f (n)(a به معنی مشتق nام f در نقطه a میباشد.

اگر این سریها برای هر مقدار x در فاصله (a-r, a+r) همگرا بوده و مجموع آن برابر (f(x باشد، آنگاه تابع (f(x تحلیلی نامیده میشود. برای اطمینان از همگرایی سریها به (f(x، معمولا از تخمین برای جمله باقیمانده قضیه تیلور استفاده میشود. یک تابع تحلیلی است، اگر و فقط اگر بتوان آنرا بصورت یک سریهای توانی نمایش داد؛ ضرایب در سریهای توانی لزوما همان ضرایبی است که در فرمول سریهای تیلور داده شده است.
اگر a = 0 باشد، این سریها به نامسریهای مک‌لارین(Maclaurin) نامیده میشود.
اهمیت یک چنین سریهای توانی سه جانبه است. اول، مشتق گیری و انتگرال گیری سریهای توانی میتواند جمله به جمله انجام شود لذا بطور خاصی ساده است. دوم، یک تابع تحلیلی میتواند بطرز یکتایی به تابع هولومورفیک(holomorphic) تعریف شده روی یک صفحه باز در روی سطح مختلط، امتداد داده شود، که مکانیزم کامل تحلیل مختلط را فراهم مینماید. سوم، سریهای (کوتاه شده) میتواند برای محاسبه مقادیر تقریبی تابع استفاده شود.




img/daneshnameh_up/b/b1/Expinvsq.png.

تابع e-1/x² تحلیلی نیست، مقدار سریهای تیلور 0 است، درحلیکه مقدار تابع غیر صفر است.


توجه داشته باشید که مثالهایی برای توابع (f(x که دارای مشتقات محدود بوده و سریهای تیلور آنها همگرا بوده ولی برابر (f(x نیست، وجود دارد. برای مثال، برای تابع تعریف شده مقطع بصورت (f(x) = exp(−1/x² اگر x ≠ 0 وf(0) = 0،
تمام مشتفات در نقطه x = 0 صفر میباشند، بنابراین سریهای تیلور (f(x صفر بوده، و شعاع همگرایی آن محدود است، اگر چه تابع بطور یقین صفر نمی باشد. این آسیب، توابع ارزشمند- مختلط برای یک متغیر مختلط را مخدوش نمی نماید. توجه اینکه با نزدیک شدن z به سمت 0 در طول محور فرضی (exp(−1/z² به 0 نزدیک نمی شود.

بعضی از توابع را نمیتوان بصورت سریهای تیلور نوشت زیرا آنها دارای حالت استثنایی می باشند؛ در این حالتها، اغلب نیز میتوان به بست سریهایی دست یافت اگر بتوان از توانهای منفی متغیر x استفاده نمود؛ رجوع شود به سریهای لارنت«Laurent). برای مثال، (f(x) = exp(−1/x² را میتوان بر حسب سریهای لارنت نوشت.

قضیه پیشرفت اخیر برای یافتن سریهای تیلوری است که بتواند راهکاری برای معادلات دیفرانسیل باشد. این قضیه توسعه تکرار پیکارد«Picard) میباشد.

فهرست سریهای تیلور


چندین بست سریهای تیلور مهم بشرح ذیل میباشد. تمام این بستها نیز برای متغیرهای مختلط x صادق می باشد.

توابع اکسپتانسیلی و لگاریتم طبیعی:

:

:

سریهای هندسی:

:

قضیه فرعی-جزیی«Binomial» :

:

توابع مثلثاتی:

:

:

:

:

:

:

توابع هایپربولیک:

:

:

:

:

:



توابع لامبرت«Lambert's W):

:

اعداد Bk که در بستهای (tan(x و (tanh(x ظاهر می شوند همان اعداد برنولی ، (C(α,n در بستهای فرعی-جزیی ضرایب فرعی-جزیی بوده و Ek در بستهای (sec(x همان اعداد اولر می باشند.

چند بعدی


سریهای تیلور را به توابع با چند متغیر نیز تعمیم داد.

:

عدد نپرین

درمیان جمیع دستگاههای لگاریتمی ممکن(با پایه بزرگتر از 1) تنها دو دستگاه متداولند ، که یکی ز آنها لگاریتمهای طبیعی هستند که بر مبنای عدد نپرین بنا شده اند. ودر ریاضیات عالی تنها لگاریتمهایی که تقزیبا منحصرا به کار میروند لگاریتمهای طبیعی اند.

img/daneshnameh_up/6/69/euler.jpg
لئونارد اویلر




 

تاریخچه

Leonhard Euler 1707-83 پایه لگاریتم طبیعی (~ 2.71828)، اولین بار توسط لئونارد اویلر (Leonhard Euler 1707-83) یکی از باهوشترین ریاضیدانان تاریخ ریاضیات مورد استفاده قرار گرفت. در یکی از دست خطهای اویلر که ظاهرا" بین سالهای 1727 و 1728 تهیه شده است با تیتر Meditation on experiments made recently on the firing of cannon اویلر از عدی بنام e صحبت می کند. هر چند او رسما" این نماد را در سال 1736 در رساله ای بنام Euler's Mechanica معرفی میکند.


در واقع باید اعتراف کرد که اویلر کاشف یا مخترع عدد e نبوده است بلکه سالها قبل فردی بنام جان ناپیر (John Napier 1550-1617) در اسکاتلند هنگامی که روی لگاریتم بررسی می کرده است بحث مربوط به پایه طبیعی لگاریتم را به میان کشیده است. فراموش نکنید که شواهد نشان میدهد حتی در قرن هشتم میلادی هندی ها با محاسبات مربوط به لگاریتم آشنایی داشته اند.

در اینکه چرا عدد ~ 2.71828 بصورت e توسط اویلر نمایش داده شده است صحبت های بسیاری است. برخی e را اختصار exponential می دانند، برخی آنرا ابتدای اسم اویلر (Euler) می دانند و برخی نیز میگویند چون حروف a,b,c و d در ریاضیات تا آن زمان به کرات استفاده شده بود، اولر از e برای نمایش این عدد استفاده کرد. هر دلیلی داشت به هر حال امروزه اغلب این عدد را با نام Euler می شناسند.

کاربرد

اویلر هنگامی که روی برخی مسائل مالی در زمینه بهره مرکب در حال کار بود به عدد e علاقه پیدا کرد. در واقع او دریافت که در مباحث بهره مرکب، حد بهره به سمت عددی متناسب (یا مساوی در شرایط خاص) با عدد e میل میکند. بعنوان مثال اگر شما 1 میلیون تومان با نرخ بهره 100 درصد در سال بصورت مرکب و مداوم سرمایه گذاری کنید در پایان سال به رقمی حدود 2.71828 میلون تومان خواهید رسید.

در واقع در رابطه بهره مرکب داریم :




که در آن P مقدار نهایی سرمایه و بهره است، C مقدار اولیه سرمایه گذاری شده،r نرخ بهره، n تعداد دفعاتی است که در سال به سرمایه بهره تعلق می گیرد و t تعداد سالهایی است که سرمایه گذاری می شود.

در این رابطه اگر n به سمت بی نهایت میل کند - حالت بهره مرکب - فرمول را می توان بصورت زیر ساده کرد :



اویلر همچنین برای محاسبه عدد e سری زیر را پیشنهاد داد :




لازم است ذکر شود که اویلر علاقه زیادی به استفاده از نمادهای ریاضی داشت و ریاضیات امروز علاوه بر عدد e در ارتباط با مواردی مانند i در بحث اعداد مختلط، f در بحث توابع و بسیاری دیگر نمادها مدیون بدعت های اویلر است.

عدد پی

img/daneshnameh_up/5/56/pi1.jpg


عدد پی عددی است که در اکثر محاسبات ریاضی به نحوی حضور دارد و از مهمترین اعداد کاربردی در ریاضیات میباشدو آن را با نمایش میدهند. در هندسه اقلیدسی دو بعدی، این عدد را نسبت محیط دایره به قطر دایره و یا مساحت دایره ای به شعاع واحد تعریف میکنند.
در کتابهای جدیدتر این عدد را با آنالیز توابع مثلثاتی تعریف میکنند.به عنوان نمونه عدد پی رادو برابر کوچکترین مقدار مثبت x ،که به ازای آن cos(x)=0 میشود تعریف میکنند.


تاریخچه

بابلیان هنگامی که میخواستند مساحت دایره را حساب کنند،مربع شعاع آن را در 3 ضرب میکردند.البته لوحهای قدیمی تری از بابلیان وجود دارد که مشخص میکند آنها مقدار پی را برابر3.125 میدانستند.در مصر باستان مساحت دایره را با استفاده از فرمول محاسبه میکردند.(d قطر دایره در نظر گرفته میشد)که در نتیجه مقدار تقریبی عدد پی 3.1605 بدست میآید.

img/daneshnameh_up/d/d6/cir.jpg



اولین نظریه در مورد مقدار عدد پی توسط ارشمیدس بیان شد.این نظریه برپایه تقریب زدن مساحت دایره بوسیله یک شش ضلعی منظم
محیطیو یک شش ضلعی منظم محاطی استوار است.
ریاضیدانان اروپایی در قرن هفدهم به مقدار واقعی عدد پی نزدیکتر شدند.از جمله این دانشمندان جیمز گریگوری بود که برای پیدا کردن مقدار عدد پی از فرمول زیر استفاده کرد:


یکی از مشکلاتی که در این روش وجود دارد این است که برای پیدا کردن مقدار عدد پی تا 6 رقم اعشار باید پنج میلیون جمله از سری فوق را با هم جمع کنیم.
در اوایل قرن هجدهم ریاضیدان دیگری به نام جان ماشین فرمول گریگوری را اصلاح کرد که این فرمول امروزه نیز در برنامه های رایانه ای برای محاسبه عدد پی مورد استفاده قرار میگیرد.
این فرمول به صورت زیر است:



با استفاده از این فرمول یک انگلیسی به نام ویلیام شانکس مقدار عدد پی را تا 707 رقم اعشار محاسبه کرد،در حالیکه فقط 527رقم آن درست بود.
امروزه مقدار عدد پی با استفاده از پیشرفته ترین رایانه ها تا میلیونها رقم محاسبه شده است. و تعداد این ارقام هنوز در حال افزایش است.

بی نهایت

بی نهایت (از واژه لاتین "finitus" به معنی "محدود" گرفته شده – علامت ریاضی ∞) چیزی است که "محدود" نیست، که در آن هیچ محدودیتی زمانی و فضایی وجود ندارد.
در ریاضیات، با اصطلاح "انتقال-از-محدود(transfinite)" مشهور است؛ و چیزی است که فقط محدود نباشد، ولی ممکن است محدودیتهای دورتر از آن داشته باشد.


نگرش باستانی در مورد بی نهایت

نگرش باستانی از ارسطو آغاز شده است:

“... تفکر درباره یک عدد بزرگ همیشه ممکن است: چون تعداد دفعاتی که میتوان یک مقدار را به دو نیمه تقسیم کرد، بی نهایت است. بنابراین بی نهایت، امکان بالقوهای است که هرگز بالفعل نمی گردد؛ تعداد اجزایی را که می توان به دست آورد، همیشه از هر عدد معینی بیشتر است. Physics 207b8

به این مورد اغلب بی نهایت "بالقوه" اطلاق می شود، بهرحال دو نظریه در این مورد با هم ترکیب شده اند. یکی اینکه همیشه پیدا کردن چیزی هایی که تعداد آنها از هر عددی بیشتر باشد ممکن است، اگرچه آن چیزها عملا وجود نداشته باشند. دیگر اینکه ما می توانیم بدون محدودیتی، اعداد بالاتر از محدود را شمارش کنیم. مثلا "برای هر عدد صحیح n، یک عدد صحیح m (m > n) وجود دارد همچنین ( Phi(m". دومین نگرش را بصورت واضح تر در آثار نویسندگان قرون وسطایی مثل William of Ockham میتوان یافت:


:"Sed omne continuum est actualiter existens. Igitur quaelibet pars sua est vere existens in rerum natura. Sed partes continui sunt infinitae quia non tot quin plures, igitur partes infinitae sunt actualiter existentes."
:(هر زنجیره حقیقتا وجود دارد. بنابراین هر یک از اجزاء آن واقعا در طبیعت وجود دارد. اما اجزاء زنجیره نامحدود هستند چون هیچ عدد بزرگی نیست که عددی بزرگتر از آن نباشد، پس اجزاء نامحدود واقعا وجود دارند).



اجزاء از بعضی جهات واقعا وجود دارند. بهرحال، در این نگرش، هیچ بزرگی بی نهایتی نمی تواند یک عدد داشته باشد، چون هر عددی را که تصور کنیم، همیشه عددی بزرگتر از آن وجود دارد: "هیچ بزرگی (از لحاظ عددی) نیست که بزرگتر از آن نباشد". Aquinas همچنین بر ضد این نظریه که بی نهایت می تواند از هر جهت کامل یا کلی باشد بحث کرده است مرجع.

نگر ش های نوین آغازین

گالیله (در زمان بازداشت طولانی در خانه اش در Sienna بعد از محکومیتش توسط استنطاق مذهبی) اولین کسی بود که متوجه شد می توان مجموعه ای از بی نهایت عدد را بصورت تناظر یک به یک با یکی از زیر مجموعه های حقیقی آن در کنار هم قرارداد. (هر جزئی از این مجموعه که با کل آن برابر نیست). مثلا ما می توانیم "مجموعه" اعداد زوج را {...،8. 6. 4، 2} با اعداد طبیعی {...،4، 3، 2، 1} بصورت زیر جور کنیم:

:1, 2, 3, 4, ...
:2, 4, 6, 8, ...

با این استدلال مشخص می شود، اگرچه طبیعتا یک مجموعه که بخشی از مجموعه دیگر بوده، کوچکتر است(چون تمام اعضاء آن مجموعه را شامل نمی شود) از بعضی جهات هم اندازه اند. او معتقد بود این یکی از مشکلاتی است که وقتی ما میخواهیم "با ذهن محدود خود" یک امر نامحدود را درک کنیم، پیش می آید.

تا کنون آنگونه که من درک کردهام ما تنها می توانیم اینگونه استنباط کنیم که کل تمامی اعداد نامحدود است، اینکه تعداد مجذورات نامحدودند، و تعداد ریشه آنها نیز نامحدود می باشد، نه تعداد مجذورات کمتر از کل تمامی اعدادند و نه آن یکی بیشتر از دیگری است؛ و بالاخره خصوصیات "برابر"، "بزرگتر"، و "کوچکتر" قابل اعمال به بی نهایت نیستند، بلکه فقط قابل اعمال به کمیات محدود اند در دو علم جدید 1938 .

این نظریه که اندازه را می توان بوسیله تطابق یک به یک سنجید، امروزه به نام اصل هیوم معروف است، اگرچه هیوم نیز همانند گالیله معتقد بود که این اصل نمی تواند در مورد مجموعه های نا محدود بکار رود.

Locke، لوک نیز همانند فلاسفه تجربه گرا نیز بر این باور بود که ما نمی توانیم هیچ نظر مناسبی درباره بی نهایت داشته باشیم. آنها عقیده داشتند تمامی نظرات ما از نمود احساس یا تصورات سرچشمه می گیرد، و چون تمامی حواس و خیالات ما ذاتا محدودند، به همین دلیل دایره افکار و عقاید ما محدود خواهند بود. نظر ما درباره بی نهایت صرفا منفی یا شخصی است.

:"اجازه ندهیم هر اندازه که عقیده مثبت در ذهن خود نسبت به هر مکان، مدت یا عددی داریم شدت یابد، چون بهرحال آنها محدودند؛ اما وقتی یک باقیمانده پایان ناپذیر را فرض می کنیم، که تمامی قیود را از آن برمیداریم، و به ذهن خود اجازه تفکرات تصاعدی بی پایان را می دهیم، بی آنکه عقیده خود را کامل نماییم،آنجاست که ما نظر خود را در مورد بی نهایت خواهیم داشت؟ تازه وقتی فکر خود را درباره فضا یا مدت بینهایت شکل میدهیم، آن نظر بسیار مبهم و پیچیده است، زیرا آن از دو بخش بسیار متفاوت ساخته شده است، اگر متناقض نباشند. برای کمک به تنظیم یک طرح در مورد هر فضا یا عددی، به بزرگی تصورمان، کافی است بسادگی ذهن را راحت نموده و تفکرمان را در باره آن طرح متوقف سازیم؛ که برخلاف عقیده در باره بینهایت است، که عبارتست از تصور تصاعدی بی پایان." (Essay, II. xvii. seven. ، تاکید نویسنده)

بطور بسیار عالی، توماس هابز فوق-تجربه گرا، سعی نمود تا از ایده بینهایت بالقوه در روشنایی کشف شکل «Gabriel's horn) بوسیله توریچیلی Evangelista Torricelli دفاع نماید، شکلی که سطح نامحدود داشته، ولی حجم آن محدود است.

ادراک ریاضی


درک ریاضی مدرن از بینهایت در اواخر قرن نوزدهم توسط کارهایGeorg Cantor،
Gottlob Frege، Richard Dedekind] و دیگران با استفاده از ایده مجموعه ها، توسعه یافت.برخورد آنها در اصل به قبول ایده ««تناظر یک به یک بعنوان یک استاندارد برای مقایسه سایز مجموعه ها بود، و رد کردن نظر گالیله (که از اقلیدس ناشی شده بود) مبنی بر اینکه کل نمیتواند هم اندازه جزء باشد. یک مجموعه نامحدود را میتوان بصورت ساده طوری تعریف نمود که هم اندازه حداقل یکی از اجزاء "مناسب" آن باشد.

بدینسان کانتور نشان داد که مجموعه های بینهایت میتوانند اندازه های متفاوت داشته باشند، با تمایز بین مجموعه های بینهایت قابل شمارش و بینهایت غیر قابل شمارش، و یک فرضیه اعداد کاردینال را حول این مطلب توسعه داد. نظر او غالب گردید و ریاضیات مدرن عملا بینهایت را پذیرفت. سیستمهای اعداد توسعه یافته مشخصی، مانند اعداد حقیقی، اعداد معمولی(محدود) و اعداد نامحدود را با سایزهای مختلف، متحد می نمایند.

وقتی سروکارمان با مجموعه های نامحدود می افتد، بصیرت کسب شده ما از مجموعه های محدود ازکار میافتد. یک مثال برای این پارادوکس گراند هتل هیلبرت است.

یک سوال فریبکارانه این است که آیا بینهایت عملی در کیهان مادی وجود دارد: آیا تعداد ستاره ها نامحدود است؟ آیا گیهان دارای حجم نامحدود است؟ آیا فضا "تا ابد ادامه" دارد؟ این یک سوال باز مهم در کیهان شناسی است. توجه داشته باشید که سوال از نامحدود بودن بصورت منطقی، غیر از سوال در مورد داشتن مرز می باشد. سطح دو بعدی زمین، برای مثال، محدود است، در حالیکه هیج مرزی ندارد. با راه رفتن / دریانوردی / رانندگی به اندازه کافی طولانی در مسیر مستقیم، شما درست به همان نقطهای که شروع کرده بودید، باز می گردید. کیهان، حداقل در مبادی و اصول، ممکن است بر اساس یک اصل مشابه عمل نماید؛ اگر شما با فضاپیمای خود به اندازه کافی طولانی در مسیر مستقیم و روبروی خود پرواز کنید، شما اتفاقا و بصورت ناگهانی دوباره از همان نقطهای که از آن شروع کرده بودید، می گذرید.

نظریات مدرن

مباحثه مدرن درباره بینهایت امروزه بصورت بخشی از تئوری مجموعه و ریاضیات مرد توجه قرار گرفته است، و کلا فلاسفه از بحث درباره آن احتراز می کنند. Wittgenstein یک استثناء بوده است، کسی که حملات مهیجی را علیه بدیهیات تئوری مجموعه، و ایده بینهایت عملی، در "اواسط عمر خود" انجام داد.

بینهایت امروزه به انواع مجوعه ها نامحدود زیادی تقسیم شده است، مانند aleph-null، یک سری قابل شمارش از اعداد طبیعی، و beth-one، یک سری غیر قابل شمارش مانند تعداد کمانهای موجود در یک دایره یا تعداد نقاط روی یک خط، و یک تعداد نامحدود از چیزهای دیگر.

:"آیا معادله m = 2n گروه تمام اعداد را با زیرگروههایش مرتبط می کند؟ خیر. آن هر عدد دلخواهی را با دیگری مرتبط می سازد، و بدین ترتیب ما به گروههای زوج نامحدود وارد می شویم، که هرکدام به دیگری مرتبط میباشد، ولی هرگز به گروه یا زیرگروهی مرتبط نیستند. هیچیک از این دو، یکجوری خودش یا دیگر گونه از یک زوج گروه، فرآیند نامحدود نمی باشند ... در موهومات که m = 2n یک گروه را با زیرگروههایش مرتبط می سازد، هنوز ما صرفا یک حالت از دستور زبان دوپهلو را خواهیم داشت." (Philosophical Remarks ? 141, cf Philosophical Grammar p.465)

برخلاف تجربه گراهای سنتی، او معتقد بود بینهایت یک جوری در درک تجربی مسلم می باشد.

:"من میتوانم وجود هر تجربه محدودی را در فضا مشاهده کنم ... ما ضرورت بینهایت را در فضا در ...کوچکترین جزء آن تشخیص میدهیم". " زمان با همان احساس نامحدود است همانطور که فضای سه بعدی جرکت و منظر نامحدود است، اگرچه در حقیقت دورترین جایی که می توانم ببینم، دیوارهای اتاقم باشد."

:" آنچه درباره بی پایانی، نامحدود است، فقط بی پایانی خودش است ..."

مطلق


سوال دیگر این است که آیا ادراک ریاضی از بینهایت ارتباطی با ادراک مذهبی از خدا دارد؟ این سوال هم کانتور را، با عقیده اش در مورد بینهایت مطلق که با خدا برابر قرارداده شده است، و هم Kurt Godel را با اثبات ؟؟؟ Godel's ontologicalاش از وجود یک نهاد که او آنرا به خدا وابسته کرد، مخاطب خود قرار داده است.

قضیه فیثاغورث

در علم ریاضی، قضیه فیثاغورث، یک رابطه در فضای اقلیدسی بین اضلاع یک مثلث قائم الزاویه را بیان میکند. اگر چه این قضیه قبل از آن که فیثاغورث آن را بیان کند توسط بابلیان و هندوها به کار برده می شد ولی به نام او ثبت گردید

قضیه

 

img/daneshnameh_up/6/62/Pythagorean.png


فرض کنید سه مربع روی اضلاع یک مثلث قائم الزاویه،که طول اضلاع قائم آن a وb و طول وتر آن c میباشد؛مطابق شکل زیر می سازیم


این قضیه به ما توضیح میدهد که جمع مساحتهای دو مربع ساخته شده روی دو ضلع قائم یک مثلث قائم الزاویه با مساحت مربع ساخته شده روی وتر برابر است.

مثلث قائم الزاویه مثلثی است که دارای یک زاویه قائم میباشد و به ضلعی که روبروی این زاویه در مثلث قرار دارد، وتر میگویند.
در شکل اضلاع زاویه قائم با aوb و وتر با c نشان داده شده است.
بیان دیگر قضیه به این صورت است که در یک مثلث قائم الزاویه مجموع مربعات دو ضلع قائم با مجذور وتر برابر است.

جالب است بدانید که بیش از چهل روش هندسی برای اثبات این قضیه وجود دارد.


 

اثبات قضیه


 

img/daneshnameh_up/5/56/Pythagorean_proof.png


می توان با توجه به شکل روبرو اثبات هندسی قضیه را به راحتی درک کرد.
در هر دو شکل مربعی به ضلع a+b داریم.در شکل سمت راست چهار نمونه از مثلث قائم الزاویه دور مربع ساخته شده بروی وتر وجود دارد. و هر چهار مثلث دارای مساحت یکسان می باشند. با چند جابجایی در شکل سمت راست به شکل سمت چپ می رسیم.در این شکل همان چهار مثلث قبلی وجود دارند ولی مربعی که اضلاع آن به c بود به دو مربع به اضلاع a,b تبدیل شده است، که همان قضیه فیثاغورث را نشان میدهد




img/daneshnameh_up/b/b5/1.gif





شکل روبرو نیز نشان دهنده روش دیگری از اثبات هندسی می باشد:







عدد طلائی

عدد طلائی عددیست ، تقریباَ مساوی 1.618 ، که خواص جالب بسیاری دارد ، و بعلت تکرار زیاد آن در هندسه ، توسط ریاضیدانان کهن مطالعه شده است . اشکال تعریف شده با نسبت طلائی ، از نظر زیبائی شناسی در فرهنگهای غربی دلپذیر شناخته شده، چون بازتابنده خاصیتی بین تقارن و عدم تقارن است.

دنیای اعداد بسیار زیباست و شما می توانید در آن شگفتیهای بسیاری را بیابید. در میان اعداد برخی از آنها اهمیت فوق العاده ای دارند، یکی از این اعداد که سابقه آشنایی بشر با آن به هزاران سال پیش از میلاد میرسد عددی است بنام "نسبت طلایی" یا Golden Ratio. این نسبت هنوز هم بارها در هنر و طراحی استفاده می شود . نسبت طلائی به نامهای برش طلائی ، عدد طلائی ، نسبت الهی نیز شناخته می شود و معمولاَ با حرف یونانی ، مشخص می شود.


 

تعریف

img/daneshnameh_up/f/fc/golden1-0.gif
نحوه محاسبه نسبت عدد طلائی


پاره خطی را در نظر بگیرید و فرض کنید که آنرا بگونه ای تقسیم کنید که نسبت بزرگ به کوچک معادل نسبت کل پاره خط به قسمت بزرگ باشد. به شکل توجه کنید. اگر این معادله ساده یعنی را حل کنیم (کافی است بجای b عدد یک قرار دهیم بعد a را بدست آوریم) به نسبتی معادل تقریبا
1.61803399 یا 1.618 خواهیم رسید.

کاربردها

img/daneshnameh_up/d/d2/goldenh.gif
برش اهرام و نسبت طلائی


شاید باور نکنید اما بسیاری از طراحان و معماران بزرگ برای طراحی محصولات خود امروز از این نسبت طلایی استفاده می کنند. چرا که بنظر میرسد ذهن انسان با این نسبت انس دارد و راحت تر آنرا می پذیرد. این نسبت نه تنها توسط معماران و مهندسان برای طراحی استفاده می شود. بلکه در طبیعت نیز کاربردهای بسیاری دارد.
برش اهرام و نسبت طلایی اهرام مصر یکی از قدیمی ترین ساخته های بشری است که در آن هندسه و ریاضیات بکار رفته شده است. مجموعه اهرام Giza در مصر که قدمت آنها به بیش از 2500 سال پیش از میلاد می رسد یکی از شاهکارهای بشری است که در آن نسبت طلایی بکار رفته است. به این شکل نگاه کنید که در آن بزرگترین هرم از مجموعه اهرام Giza خیلی ساده کشیده شده است.

مثلث قائم الزاویه ای که با نسبت های این هرم شکل گرفته شده باشد به مثلث قائم مصری یا Egyptian Triangle معروف هست و جالب اینجاست که بدانید نسبت وتر به ضلع هم کف هرم معادل با نسبت طلایی یعنی دقیقا" 1.61804 می باشد. این نسبت با عدد طلایی تنها در رقم پنجم اعشار اختلاف دارد یعنی چیزی حدود یک صد هزارم. باز توجه شما را به این نکته جلب می کنیم که اگر معادله فیثاغورث را برای این مثلث قائم الزاویه بنویسم به معادله ای مانند phi2=phi+b2 خواهیم رسید که حاصل جواب آن همان عدد معروف طلایی خواهد بود. (معمولا" عدد طلایی را با phi نمایش می دهند)

طول وتر برای هرم واقعی حدود 356 متر و طول ضلع مربع قاعده حدودا" معادل 440 متر می باشد بنابر این نسبت 356 بر 220 (معادل نیم ضلع مربع) برابر با عدد 1.618 خواهد شد.

عدد طلائی از دیدگاه کپلر

کپلر (Johannes Kepler 1571-1630) منجم معروف نیز علاقه بسیاری به نسبت طلایی داشت بگونه ای که در یکی از کتابهای خود اینگونه نوشت : "هندسه دارای دو گنج بسیار با اهمیت می باشد که یکی از آنها قضیه فیثاغورث و دومی رابطه تقسیم یک پاره خط با نسبت طلایی می باشد. اولین گنج را می توان به طلا و دومی را به جواهر تشبیه کرد".

تحقیقاتی که کپلر راجع به مثلثی که اضلاع آن به نسبت اضلاع مثلث مصری باشد به حدی بود که امروزه این مثلث به مثلث کپلر نیز معروف می باشد.همچنین کپلر پی به روابط بسیار زیبایی میان اجرام آسمانی و این نسبت طلایی پیدا کرد.